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A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-
dimensional metallic glass in the limit of low temperatures and long �infinite� time scales. The elementary
thermally activated events are determined using the activation-relaxation technique �ART�. By tracking the
minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming
transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-
controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally
activated events in the glass microstructure both below and above the yield stress. We show that aging below
the yield stress increases the stability of the glass, both thermodynamically �the internal potential energy
decreases� and dynamically �the aged glass is surrounded by higher-energy barriers than the initial quenched
configuration�. In contrast, deformation above the yield stress brings the glass into a high internal potential
energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The
strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed
here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple
shear deformation.

DOI: 10.1103/PhysRevB.80.184203 PACS number�s�: 62.20.F�, 83.60.La, 81.05.Kf

I. INTRODUCTION

The plasticity of metallic glasses is of fundamental inter-
est for this emerging class of structural materials,1 and also
has broad relevance through analogy with other disordered
systems, including colloidal,2 granular,3 and fibrous4 materi-
als, as well as emulsions and foams;5 a review spanning
these various materials is provided in Ref. 6. All these sys-
tems have one important feature in common: at sufficiently
high density and low temperature, they exhibit a stress-
induced jamming-unjamming transition. Below a critical ap-
plied shear stress, the yield stress, they behave like solids
�jammed� while above this stress, they flow like liquids �un-
jammed�. The physical origin of the yield stress remains an
open question of both fundamental and technological rel-
evance.

Much insight has been obtained on the plasticity of me-
tallic glasses through atomic-scale computer simulations.
Glasses have been deformed either quasistatically by apply-
ing strain increments interspersed with energy
minimizations7–20 or dynamically at constant
strain-rates.21–30 It is important to note, however, that neither
method accounts for thermally activated events. In quasi-
static simulations, plastic events occur only when the glass is
brought by the applied strain into positions of instability in
the potential energy landscape,10 while dynamical simula-
tions are strongly limited in time scale and thus require very
high applied strain rates. Both simulation techniques are thus
limited to regions of high internal shear stresses and are pri-
marily relevant for fast deformation; while they may have
some relevance for the propagation of shear bands,28,29 they
do not apply to slower deformation, as in creep31 or aging.32

Studying thermally activated processes requires a detailed
characterization of the potential energy landscape of the
system,33 including its minima �the inherent structures�34 and

saddle points �the activated states�. Different methods to lo-
cate these configurations in glasses have been proposed, in-
cluding excitation methods,35,36 basin-filling methods,37,38

and eigenvector-following methods.39–41 In the present ar-
ticle we employ a method from the third family, namely the
activation-relaxation technique �ART�, initially proposed by
Mousseau and co-workers42–45 to study diffusion processes
in glasses. In a previous article,46 we used ART to reveal the
energy landscape for deformation of a metallic glass. In that
work, we showed that quasistatic shear deformation has a
profound effect on the distribution of thermally activated
events. In particular, the configurations reached during
steady-state flow are surrounded by a high density of saddle
points with low activation energies ��0.1 eV�. They also
have a specific microstructure, polarized by the applied shear
deformation, as evidenced by an excess of thermally acti-
vated negative strain events after elastic unloading. These
results underscore the highly nonequilibrium flow state at-
tained in quasistatic simulations, and, by extension, in con-
ventional molecular dynamics simulations.

In the present paper, we extend our prior work using ART
to explore glass deformation, with the specific aim of reveal-
ing the structure and energy landscape of a glass deformed
over long �infinite� time scales. Our approach is to use Monte
Carlo simulations in conjunction with ART to identify the
elementary thermally activated transitions at each step. In
contrast to molecular dynamics or quasistatic simulations,
we are able to effect true stress-controlled deformation for
the first time in atomistic simulation, tracking as a function
of applied stress the minimum-energy state of the glass, i.e.,
the configuration toward which the glass converges in the
limit of long-time scales and low temperatures. We deter-
mine, with precision and without limitations due to thermal
activation, the yield stress of the glass in this limit, and we
directly observe the jamming-unjamming transition. Also, by
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using ART to sample the energy landscape around atomic
configurations, we capture glass evolution both during aging
below the yield stress and during shear flow above it.

II. METHODOLOGY

A. Atomic system and boundary conditions

We consider a two-dimensional �2D� binary equimolar
glass made of N=4000 atoms that interact with the 8–4
Lennard-Jones potentials developed by Kobayashi et al.7 and
already employed in Refs. 9, 47, and 48. An example section
of a simulation cell is shown in Fig. 1. Periodic boundary
conditions are used in both X and Y directions. A simple
shear �XY is applied through Lees-Edwards periodic bound-
ary conditions49 by adding a shift �x=�XYLY along X be-
tween the upper and lower Y edges of the simulation cell.

An initial glass is obtained by quenching from a low-
density gas at 2000 K with a cooling rate of 1011 K s−1,
using the Parrinello-Rahman algorithm51,52 to enforce zero
average internal stresses. Below, we report all stresses nor-
malized by the shear modulus of this glass, �
=0.215 eV /Å2. After the initial quench, the cell dimensions
LX and LY are kept constant throughout the simulations.

B. Stress-controlled energy minimization

Conventional quasistatic shear simulations employ strain-
controlled boundary conditions; the shift �x between upper
and lower Y edges is increased in small increments and the
internal potential energy is minimized between increments at
fixed applied strain. Although the present paper does not fo-
cus on such quasistatic simulations, we show in Fig. 2, as a
reference for further comparison, the resulting variations of
average internal shear stress and potential energy obtained in
this way with the present system, starting from the initial
quenched glass with strain increments of 10−4.

The stress-strain curve is composed of a linear elastic re-
gime followed by a plastic regime that starts at an upper-
yield point, which is evidence that the initial quenched con-
figuration is well-relaxed.13,26 After about 50% strain, the
glass enters a steady flow state where the shear stress fluc-
tuates around a constant value, the flow stress, equal to about
0.03 �. As shown in Fig. 2�b�, the internal potential energy
also stabilizes around a well-defined average value of about
0.004 eV/atom.

In order to determine the yield stress with precision,
stress-controlled simulations would be desirable. However,
stress control is not generally possible using a quasistatic
algorithm �i.e., small stress increments followed by energy
minimizations� because such simulations are unstable: in the
plastic regime, which starts at a stress close to the upper-
yield point in strain-controlled deformation �0.046 ��, the
glass deforms continuously without finding another equilib-
rium configuration. This is a consequence of the lack of
strain hardening in glasses deformed in simple shear, and a
corollary of the existence of a steady state for this deforma-
tion geometry.

In the present article, we propose an alternative method
whereby the deformation is effected through a Monte Carlo
algorithm that allows for stress-controlled boundary condi-
tions. The method is presented in Sec. II D and uses ART,
described in Sec. II C, to find the elementary transitions. In

FIG. 1. �Color online� Atomic configuration of a glass. Copper
atoms appear in yellow, zirconium atoms in gray. Only a section of
the simulation cell is shown. The visualization software AtomEye

�Ref. 50� was used.
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FIG. 2. Evolution of the average internal �a� shear stress and �b�
potential energy during strain-controlled quasistatic shear
deformation.
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the remainder of this Section, we detail the algorithm used to
minimize the potential energy of the glass at constant applied
shear stress, a procedure required by ART.

The applied shear stress, �A, is controlled by using an
equation of motion for the shift �x with associated force
−LX · ��−�A�, where ���XY is the average internal shear
stress. The total potential energy of the glass, EP, is then
related to the internal potential energy EI �energy of inter-
atomic interactions� by the work of the applied stress:

EP = EI − �A · LX · �x . �1�

The total potential energy is minimized using a quenched
dynamics algorithm, in which the motion of the atoms and
evolution of the shift are treated separately. For the atoms,
Newton’s equations of motion are integrated accounting for
inertia unless the scalar product of the 2N atomic velocity
vector V and the 2N force vector F is negative, in which case
V is set to zero. Although this static algorithm is based on
Newton’s equations, it does not implement a true dynamics
and the atomic masses and time step should be viewed as
numerical parameters. Here, all atoms are assigned the same
numerical mass and the integration parameter is h�dt2 /m
=0.04 Å /N with dt the numerical time step. Convergence is
reached when the norm of the atomic force vector ��F�, taken
as the largest component of the vector in absolute value� is
less than FC=10−4 eV /Å. In analogy with the FIRE
algorithm,53 convergence is accelerated by multiplying h by
1.2 at each time step when V ·F has been positive for a
minimum of 5 time steps, with a maximum integration pa-
rameter of four times its initial value. Quenched dynamics is
also applied to �x with an integration parameter H
=h /1000 but the rate of change of �x is reset to zero inde-
pendently of atomic velocities and H is not rescaled during
the minimizations.

C. Activation-relaxation technique

ART is an eigenvector-following method that allows sam-
pling of the saddle points on a potential energy surface, con-
nected to an initial equilibrium configuration. Saddle points,
or activated states, have zero force ��F��FC� and a Hessian
matrix with exactly one negative eigenvalue. ART only re-
quires computation of the lowest eigenvalue and associated
eigenvector of the Hessian matrix, which are determined us-
ing the Lanczos algorithm,54 an iterative method based only
on force evaluations. Its convergence to the saddle was re-
cently improved by Cancès et al.55

Saddle points are found here at constant applied strain
��x=constant� because the thermally activated escape to a
saddle point is a rapid process that does not allow for stress
relaxation. On the other hand, the relaxation from the acti-
vated to the final state is stress-controlled �same applied
stress as the initial configuration� because the system is as-
sumed to spend a sufficiently long time in the final state to
allow for stress relaxations.

ART is an iterative method. We use the subscript n for all
quantities computed at the nth step: xn the 2N vector of
atomic configuration, Fn, the force vector, Cn, the minimum
eigenvalue, and Tn the corresponding eigenvector. The cal-

culation starts from an initial configuration, x0, equilibrated
under an applied stress �A. An initial direction in phase
space, T0, is chosen at random. In order to account for the
localized nature of thermal activation, this vector contains
only the random displacement of an atom chosen at random
in the simulation cell. ART is then composed of three stages.
In the first stage, the destabilization phase, the system is
moved away from the basin of attraction of x0 along T0
using a step of fixed length, �0:

xn+1� = xn + �0T0. �2�

The configuration xn+1� is then relaxed perpendicularly to T0
using quenched dynamics. The relaxation is performed at
constant applied strain which allows a strict perpendicularity
with T0 to be maintained. The relaxation is limited to NR

0

steps and leads to the configuration xn+1. The minimum ei-
genvalue of the Hessian matrix Cn+1 and corresponding ei-
genvector Tn+1 are then computed approximately using the
Lanczos algorithm with NL iterations, starting from Tn.

The above procedure is repeated until the minimum cur-
vature becomes less than a critical negative value: Cn+1�
−C with C	0. The algorithm then enters its second phase,
the convergence phase, during which the system is brought
to a saddle point by following the negative eigenvalue direc-
tion. The direction of motion is set to Tn and the system is
moved using a variable step length proposed in Ref. 55 and
also included in the hybrid eigenvector-following method:41

�n� =
Tn · Fn

Cn
. �3�

If Cn is small in absolute value, �n� may diverge and a cutoff
has to be used. Different solutions have been proposed.41,55

Here, we simply limit the step length to a maximum value:
�n=min��n� ,�1�. The system is then displaced according to:

xn+1� = xn + �nTn �4�

and relaxed perpendicularly to Tn within a maximum number
of steps NR

1 . Convergence near the saddle is accelerated by
incrementing NR

1 by 1 each time �n���1. Cn+1 and Tn+1 are
then computed using the Lanczos algorithm, starting from Tn
with NL steps. Tn+1 is oriented such that Tn+1 ·Fn+1�0, in
order to move the system away from the initial configuration.

This procedure is iterated until either convergence �i.e.,
�Fn��FC� or Cn becomes positive again. The latter usually
means that the system has fallen back into the basin of at-
traction of x0: the search is then deemed unsuccessful and
another search is started.

Once a saddle point is found, its activation energy is given
by the difference in internal potential energy between initial
and activated states. ART then enters its third phase, the re-
laxation phase. The system is perturbed along Tn toward x0
and relaxed at constant applied strain using quenched dy-
namics to check that the saddle point is connected with x0. If
not, the saddle point is deemed nonconnected; it is rejected
and a new search is started. If the saddle is connected, the
system is perturbed along Tn away from x0 and relaxed at
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constant applied stress �A, in order to determine the final
configuration. The inelastic strain �I associated with the tran-
sition is then given by:

�I =
�xF − �xI

LY
�5�

where �xF−�xI is the difference in shift between initial and
final configurations.

In the present work, ART involves the numerical param-
eters listed in Table I. They must be optimized carefully be-
cause they strongly influence the efficiency of the method,
which depends on various factors. The first such factor is the
average number of force evaluations per saddle point. Sec-
ond is the fraction of unsuccessful searches, which is the
fraction of searches where Cn becomes positive during a con-
vergence phase. Third is the fraction of nonconnected
saddles, where the search leads to a saddle not connected
with the initial configuration. Lastly is the bias toward low-
energy barriers: ART is known to be biased toward low-
energy barriers45,56 and some parametrizations make the bias
even stronger. The number of Lanczos iterations, NL, should
always be kept low to minimize the number of force calls.
�0, NR

0 , and C control the energy and degree of relaxation of
the system at the end of the destabilization phase, which
strongly impact the convergence phase. �0 and NR

0 control
the relaxation perpendicular to T0. If �0 is too small or NR

0

too large, the system tends to remain at the bottom of the
attraction basin, lengthening the destabilization phase and
favoring low-energy barriers. On the other hand, if �0 is too
large or NR

0 too small, the system is taken very far from
equilibrium, which increases the fraction of nonconnected
saddles. A small C shortens the destabilization phase and
avoids taking the system too far from x0, thus decreasing the
fraction of nonconnected saddles, but it also increases the
risk of relaxation back into the initial basin during the first
steps of the convergence phase, thus increasing the fraction
of nonsuccessful searches. On the other hand, a large C in-
creases the fraction of nonconnected saddles. �1 and NR

1 con-
trol the convergence phase and are the most important pa-
rameters. They must be optimized together in order to be
correctly balanced. The difficulty comes from the fact that at
the end of the destabilization phase, the glass is of high en-
ergy, higher than the saddle energy in most cases, and of high
internal force �Fn�. During the first steps of the convergence
phase, the system has to be brought closer to the saddle,
which is controlled by �1 because at the beginning of the
convergence the step length obtained from Eq. �3� is large
and usually exceeds �1. And the relaxation perpendicular to
Tn, controlled by NR

1 , must not be too fast otherwise the glass
returns to the initial basin of attraction. It must not be too
slow, either, or the glass energy and force keep increasing

and the calculation does not converge. Closer to the saddle,
when the step length in Eq. �3� becomes less than �1, the
relaxation perpendicular to Tn should be better in order to
accelerate the convergence to the saddle. For this reason, in
the present algorithm, NR

1 is incremented near the conver-
gence.

These numerical parameters are also strongly system de-
pendent. They can be optimized for a given microstructure,
but it is difficult to find a set of parameters efficient for all
microstructures, for instance before and after deformation
where the glass contains very different fractions of low-
energy barriers, as will be seen in the following. The values
given in Table I represent a compromise that allows calcula-
tions on all of the various types of microstructures consid-
ered here. Also, we determine usually 4000 saddles per con-
figuration and as the size of the sample grows, the number of
redundant saddles �saddles already determined� increases.
These saddles are also rejected, which further decreases the
efficiency of the calculations. On average, in order to deter-
mine 4000 saddles in a well-relaxed glass, 30000 searches
are needed �including successful and nonsuccessful searches
as well as nonconnected and redundant saddles� for a total
number of force evaluations of about 15
106.

As a reference, Fig. 3 shows the distributions of activation
energies and inelastic strains in the initial quenched glass.
Distributions are shown for samples of different sizes, con-
taining from 500 to 4000 saddle points. These numbers are
small compared to the total number of saddles estimated in
Ref. 56 for amorphous silicon, given as 30 to 60 times the
number of atoms. However, we can see in Fig. 3 that they are
sufficient to capture the shape of the distributions. Figure
3�a� illustrates the bias of ART toward low-energy barriers:
as the sample size increases, the fraction of energy barriers
below the maximum of the distribution decreases while the
fraction of barriers above the maximum increases. Corre-
spondingly, the average activation energy, calculated from
the distributions and given in the legend of Fig. 3, increases
with the sample size. No bias is visible in the distributions of
inelastic strains shown in Fig. 3�b�, which are all peaked at
zero strain with negligible average values. In the following,
all distributions were obtained from samples containing 4000
events in order to yield the best description of the potential
energy surface.

D. Monte Carlo algorithm

The metallic glass is deformed here at constant applied
stress using a Monte Carlo method. The following procedure
is iterated at each step, starting from an equilibrium initial
configuration. First, ART is used to find a transition from the
current state. Since the initial direction of motion, T0, is
chosen at random, the activated state can be considered as
randomly selected from among all possible transitions. After
relaxation away from the saddle, the difference in total po-
tential energy between initial and final states �EP is com-
puted. If �EP�0, the transition is accepted and the final
state is taken as the current configuration. If �EP	0, the
transition is rejected, the current configuration is maintained
and ART is called again from that configuration.

TABLE I. Parameters used in ART. �0 and �1 are given in Å
and C in eV /Å2.

�0 NR
0 NL C �1 NR

1

0.1 5 10 0.01 0.5 5
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The algorithm is iterated until either a maximum strain
level �set to 600%� is achieved or a maximum number of
rejected transitions �set to 600� are reached. The latter case
thus occurs when 600 transitions are found from a given
configuration that all lead to final configurations with higher
total potential energies than the current configuration. We
then judge that the glass has reached its ground state, which
is called a jammed state. In the former case, the glass accu-
mulates deformation and we will see in the following that it
reaches a steady state that we will refer to as a flow state.

III. SIMULATION RESULTS

A. Jamming-unjamming transition

We performed Monte Carlo simulations for a range of
applied stresses below the stress-controlled elastic limit
�0.046 ��. The initial configurations were obtained from the
quenched glass by increasing the applied stress quasistati-
cally up to the desired stress. Figure 4 shows the evolution of
the total and internal potential energies of the glass as a
function of accumulated inelastic strain during simulations at

different applied stresses. When no stress is applied �black
curve�, the internal potential energy �equal to the total poten-
tial energy in this case since �A=0, see Eq. �1�� decreases
throughout the simulation, which stopped after 545 Monte
Carlo steps when the glass reached a jammed state. This
process corresponds to aging of the glass toward a low-
energy configuration.

The same behavior is obtained for applied stresses up to
�A=0.017 �: the glass accumulates some strain, but the lat-
ter remains small ��15%� and the glass converges to a
jammed state. The situation is different at �A=0.023 �,
where the glass reaches a flow state: it does not converge to
a state of minimum total potential energy but accumulates up
to 600% deformation, at which point the simulation is
stopped. Unbounded flow was obtained at all stresses above
�A=0.023 �. We note that in this regime, flow remains ho-
mogeneous and no persistent shear band forms.

The simulations thus evidence a jamming-unjamming
transition6,57 between aging and shear flow at a critical ap-
plied stress, which defines the yield stress of the glass. The
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figure, along with the distribution averages. The bin size for activa-
tion energies is 0.1 eV, and for strains 0.025%.

0 0.1 0.2 0.3
Inelastic strain

-0.012

-0.009

-0.006

-0.003

0

T
ot

al
po

t.
en

er
gy

(e
V

/a
t)

0 0.5 1 1.5 2
Inelastic strain

-0.004

-0.002

0

0.002

0.004

In
te

rn
al

po
t.

en
er

gy
(e

V
/a

t)
0 µ
0.006 µ
0.012 µ
0.017 µ
0.023 µ: <E

I
>=0.0020eV/at

0.029 µ: <E
I
>=0.0031eV/at

0.035 µ: <E
I
>=0.0036eV/at

(a)

(b)

FIG. 4. �Color online� Evolution of the �a� total and �b� internal
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ing Monte Carlo simulations at different applied stresses noted in
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the flowing regime are given in the legend of the figure.
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latter was found here equal to 0.022�0.002 �. We tested its
dependence on the direction of shear and found the same
yield stress in both positive and negative X directions as well
as in positive and negative Y directions �obtained by rotating
the simulation cell�.

The jamming-unjamming transition is clearly visible in
Fig. 4�b�, which shows the internal potential energy of the
glass. By construction of the method, the total potential en-
ergy decreases at each Monte Carlo step but the internal
potential energy �which does not account for the work of the
applied stress, see Eq. �1�� may increase or decrease. Figure
4�b� shows that below the yield stress, the internal potential
energy decreases from the beginning of the simulations while
above the yield stress, it initially increases and after about
50% strain reaches a steady-state value that increases with
the applied stress.

The transition also appears in Fig. 5, which reports the
evolution of the maximum number of rejected transitions per
step since the beginning of simulations, at different applied
stresses. Above the yield stress, the maximum number of
rejected transitions is small, less than 50; this indicates that
in a yielding glass, there are many saddle points that lead to
lower-energy configurations. In contrast, in the jamming re-
gime, the maximum number of rejected transitions increases
roughly linearly with the number of steps, meaning that the
states of decreasing internal potential energy visited by the
glass during aging are surrounded by an increasing fraction
of higher-energy states.

B. Recovery

We tested the dependence of the flow limit on the initial
state of the glass by performing recovery simulations below
the yield stress, starting from configurations obtained above
the yield stress. More specifically, we generated initial con-
figurations from the last configuration obtained in the flow-
ing regime at �A=0.023 � and relaxed at various stresses
below the elastic limit. Figure 6 shows the resulting evolu-
tions of total and internal potential energies. For comparison,
the figure also shows the evolution if the applied stress is

maintained at �A=0.023 �. Below the yield stress, the inter-
nal potential energy decreases during the simulations and
even though at 0.017 � a substantial deformation is pro-
duced �35%�, the glass systematically relaxes to a jammed
state, while at 0.023 �, the glass flows without limit. This
confirms that the jamming-unjamming transition is indepen-
dent of the initial configuration.

C. Minimum energy state microstructures

One approach to characterize the microstructure of a 2D
glass is to consider its Voronoi tessellation, as originally pro-
posed by Deng et al.9 Figure 7 shows two extreme cases:
sections of the jammed state obtained at 0 � and of the final
configuration in the flow state at 0.035 �. The atoms are
colored according to the number of sides of their Voronoi
polygon. As reported in Ref. 9, the microstructures are com-
posed of regions of quasiorder where the atoms have six-
sided polygons and appear in yellow, separated by strings of
atoms having five- and seven-sided polygons that appear in
blue in Fig. 7. Comparison of the two microstructures shows
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that aging did not induce a crystallization of the glass and
that shear flow did not significantly change the microstruc-
ture: the size of the quasiordered regions is somewhat
smaller after deformation but the region of five- and seven-
sided polygons are thinner, such that their density is the same
in both microstructures.

The effect of shear flow is more clearly identified by con-
sidering the distributions of activation energies and inelastic
strains as determined by ART. In Ref. 46 we reported such
distributions for the case of quasistatic deformation; in Fig. 8
we show them for various minimum-energy states. The ini-
tial configurations are the final states obtained at the different
applied stresses, quasistatically unloaded down to zero inter-
nal average shear stress. This unloading is effected to remove
the stress bias we reported in Ref. 46: most events under
stress are in the direction of the stress, so information spe-
cific to the microstructure is best revealed when the average
internal stress is zero. The stresses noted in Fig. 8 thus do not
refer to the actual internal average shear stress in the glass
�which is systematically less than 3
10−5 ��, but to the
stresses applied during the initial phase of deformation. In
order to be consistent with the Monte Carlo simulations, ac-

tivated states are obtained at constant applied strain while
relaxation to the final state is stress controlled with zero ap-
plied stress.

We consider first the distributions of activation energies
shown in Fig. 8�a�. Below the yield stress ��A�0.022 ��,
the distributions contain no activation energies below 0.25
eV. By comparison, the distribution in the initial quenched
glass �Fig. 3�a�� contains more low-energy barriers: 1% of
them are below 0.1 eV. The jammed state reached during
aging is therefore of higher stability in the sense that it is
separated from other states by higher-energy barriers. By
contrast, above the yield stress ��A	0.022 ��, the distribu-
tions contain a high density of low-energy barriers, the den-
sity of which increases with applied stress. The flow state
reached during deformation is therefore of both higher inter-
nal potential energy and lower stability. Creation of low-
energy barriers was also observed after quasistatic strain-
controlled plastic deformation46 with a fraction of barriers
below 0.1 eV close to 9%, much higher than in the present
case.

FIG. 7. �Color online� Atomic configurations in �a� the jammed
state obtained at 0 � and �b� the flow state at 0.035 �. The color of
the atoms depends on the numbers of sides of their associated
Voronoi polygon: yellow for 6 sides, dark blue for 5, and light blue
for 7. The same section of the simulation cell is shown in both
figures.
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FIG. 8. �Color online� Distributions of �a� activation energies
and �b� inelastic strains in the microstructure of minimum-energy
states obtained by Monte Carlo simulations at different stresses
noted in the figure along with the distribution averages. All configu-
rations were elastically unloaded down to zero average internal
shear stress before their energy landscape was sampled.
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The effect of deformation is visible in the distributions of
inelastic strains shown in Fig. 8�b�. In all cases, the distribu-
tions are peaked at zero strain because of the zero internal
average shear stress, but below the yield stress, the distribu-
tions are symmetrical with a small range, while above the
yield stress they are asymmetrical with a long tail in the
negative strain region. This asymmetry is characteristic of
the flowing regime, as shown by the inset in Fig. 8�b� where
we see that the average strain starts to deviate significantly
from zero only at the yield stress. The same effect was found
previously in quasistatically strained samples.46 This asym-
metry reflects the polarization of the microstructure acquired
by the glass during shear deformation, which is a conse-
quence of the strong influence of the history of deformation
on these systems. This point is further discussed in Sec IV D.

A high density of low-energy barriers and a nonzero av-
erage inelastic strain are the two main characteristics of the
flow state. This conclusion is confirmed in Fig. 9, which
shows the energy and strain distributions in two jammed
states obtained after recovery as presented in Sec. III B.
Comparison with the initial distributions �red curves in Fig.
8� shows that during recovery, the fraction of low-energy
barriers decreases, as well as the average inelastic strain �in
absolute value�.

D. Distributions during Monte Carlo simulations

Figure 10 shows the distributions of activation energies
and inelastic strains computed from the elementary transi-
tions accepted during Monte Carlo simulations at different
applied stresses. This figure makes apparent the marked dif-
ference between the states below and above the yield stress.
In the flowing regime, the maximum of the energy distribu-
tion is at zero energy and the distribution of inelastic strains
is strongly shifted toward positive strain events, which is
partly due to the stress-bias induced by the applied shear
stress. On the other hand, during aging, the distribution of
activation energies resembles that of the activation energies
in the microstructure shown in Fig. 8 and the strain distribu-
tion is peaked at zero. We note however that the energy
distributions in Fig. 10 contain more low-energy barriers
than those in Fig. 8. This is due to the bias of ART toward
low-energy barriers, which have a larger statistical weight in
the distribution of first accepted transitions than in the full
distribution of transitions for a given configuration.

The thermally activated events that constitute these distri-
butions are similar to those observed in quasistatic shear de-
formation. Events with small associated inelastic strain �typi-
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FIG. 9. �Color online� Distributions of �a� activation energies
and �b� inelastic strains in jammed states obtained at 0 and 0.017 �
after the recovery shown in Fig. 6 and elastic unloading.
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FIG. 10. �Color online� Distributions of �a� activation energies
and �b� inelastic strains of the transitions accepted during Monte
Carlo simulations at different applied stresses noted in the figure.
The distributions are computed from the same simulations as shown
in Fig. 4.
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cally below 0.10% strain� are localized, while larger strain
events form avalanches that span across the entire simulation
cell. In this relatively high-density glass, we do not see dif-
fusionlike events. All events, even in the absence of applied
stress, induce a shear of the structure.

IV. DISCUSSION

A. Comparison between Monte Carlo and quastistatic
simulations

We propose here a Monte Carlo approach to simulate ag-
ing and shear flow in glasses. Checking the connectivity be-
tween initial, activated, and final states found by ART en-
sures that the transitions undergone by the glass are physical
processes representative of dynamical simulations. The
present method can be distinguished from quasistatic simu-
lations in two main aspects. First, it is stress control that
allows the simulation of a wide range of applied stresses and
precise determination of the yield stress. By contrast, in qua-
sistatic simulations, the glass is mechanically forced to de-
form by application of increasing strains and the stress can-
not be controlled, but arises from the dependence of the
internal potential energy on strain.15 The second advantage is
that the present simulations are not limited by thermal acti-
vation. They enable us to investigate the long-time behavior
of the glass at low temperature and to ask whether it con-
verges to a state of minimum energy or finds a steady flow
state. In quasistatic simulations, only strain-induced transi-
tions are possible, which forbids the thermal relaxations that
give rise to aging.

We note that nevertheless, the elementary inelastic events
that occur during Monte Carlo simulations closely resemble
those observed in quasistatic simulations: the small strain
events we find with this method are in fact localized shear
zones as proposed by Argon,58 while the larger strain events
proceed by avalanches of rearrangements that span the entire
simulation cell.14,17,20 Also, in both Monte Carlo and quasi-
static simulations, the steady state is reached after about 50%
strain, as shown in Figs. 2 and 4.

In terms of computing power, the number of force calls
per Monte Carlo step depends strongly on the number of
rejected transitions. The simulation cost increases near the
jamming-unjamming transition, in particular below the yield
stress, where the relaxation to a jammed state is gradual and
involves many rejected transitions toward the end of the
simulation. Quantitatively, the total number of force calls
required to reach 200% strain at 0.035 � �well-above the
transition� is 1.65
106, including those used in exploring
unsuccessful and nonconnected saddles. It increases up to
34
106 at 0.023 � �close to the transition�. An equivalent
quasistatic simulation with strain increments of 10−4 and full
relaxations between increments requires about 2.5
106

force calls. Above the transition, the present method is thus
faster than a quasistatic simulation because stress-controlled
elementary events can produce large strains, while close to
the transition, it is slower. Also, in the latter case the yield
stress can be determined from much shorter simulations
thanks to the marked evolutions of the inelastic strain, inter-

nal potential energy and number of rejected transitions at the
yield stress, as shown in Figs. 4 and 5.

B. Stress-induced jamming-unjamming transition

The Monte Carlo simulations evidence a transition be-
tween aging to a jammed state �at low applied stresses� and
shear flow into a steady flow state �at high stresses�. The
transition is sharp and clearly visible in the evolutions of
inelastic strain �Fig. 4�a��, internal potential energy �Fig.
4�b�� and rejected transitions �Fig. 5�. We also showed that it
is independent of the initial configuration of the glass �Fig.
6�. This transition corresponds to the stress-induced
jamming-unjamming transition first discussed in the context
of granular materials3,57 and studied experimentally in such
materials59,60 and in colloidal pastes61,62 among others.

The transition is shown here to occur for an applied shear
stress equal to �A=0.022�0.002 �. This stress is well de-
fined, since just below it the internal potential energy of the
glass decreases rapidly in the simulations and the numbers of
rejected transitions increases, while just above the opposite
evolutions are observed. Interestingly, the yield stress found
here is significantly lower than the threshold stresses ob-
tained with quasistatic strain-controlled simulations shown in
Fig. 2, both the upper-yield point ��0.046 �, which is also
the elastic limit with stress-controlled boundary conditions�
and the steady-state flow stress ��0.03 ��. This is reflective
of the fact that quasistatic simulations do not give access to
the long-time behavior of the glasses because they do not
account for thermal activation. As stated above, the same is
true for finite-temperature simulations based on molecular
dynamics. The yield stresses extrapolated from athermal
stress-controlled simulations in a granular medium in Ref.
63, as well as those extrapolated from finite-temperature
strain-rate controlled simulations in a Lennard-Jones glass in
Refs. 21 and 22 are thus likely overestimated.

C. Relaxation- vs stress-driven events

We have seen in Fig. 4�b� that the internal potential en-
ergy of the glass decreases during aging whereas in the flow-
ing regime, it first increases and then saturates in steady
state. The internal potential energy may increase or decrease
because it does not account for the work of the applied stress
�Eq. �1��. The latter introduces a tilt to the potential energy
surface in the direction of positive strain, which may change
the sign of the total potential energy difference between ini-
tial and final states. The final state may thus be of higher
internal potential energy �i.e., energy in absence of applied
stress� but of lower total potential energy �i.e., energy under
stress� if the transition produces a sufficiently large strain.
We note that an increase in internal potential energy physi-
cally means introduction of damage into the glass micro-
structure; this however is difficult to identify in the micro-
structure itself, as illustrated in Fig. 7. The glass is in a state
of compression after shear deformation, implying a produc-
tion of free volume but the latter remains small and does not
lead to the formation of voids, for example.

One should therefore distinguish two types of thermally
activated transitions in glasses. The first type are those tran-
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sitions that lead to a state of lower internal potential energy,
i.e., which are energetically favorable even in the absence of
applied stress. We call these relaxation-driven transitions be-
cause, as we will see in the following, they lead to states that
are more stable both dynamically and thermodynamically.
The second types are those transitions that lead to states of
higher internal potential energy but lower total potential en-
ergy. We call these stress-driven transitions because they are
not energetically favorable in the absence of applied stress,
and therefore are the events that accumulate damage in the
glass structure.

With these two types of transitions defined, we propose
that the yield stress corresponds to the minimum applied
stress that sufficiently tilts the potential energy surface to
allow for stress-driven transitions. Indeed, Fig. 4�b� shows
that below the yield stress, the great majority of transitions
are relaxation driven and both the internal and total potential
energies decrease during the simulation. The applied stress is
thus not strong enough to significantly alter the respective
stability of inherent structures. On the other hand, above the
yield stress, the first transitions are mostly stress driven and
increase the internal potential energy of the glass. As the
internal potential energy increases, the probability of finding
a relaxation-driven transition increases and the steady state is
reached when an equilibrium between relaxation-driven and
stress-driven transitions is achieved.

We see from Fig. 4�b� that in the flowing regime, the
steady state average internal potential energy is an increasing
function of the applied stress, which reaches 0.0036 eV/atom
at 0.035 �. In quasistatic simulations �Fig. 2�, the steady
state average internal potential energy is higher �0.004 eV/
atom�, consistent with the fact that bringing the glass to po-
sitions of instability before each plastic transition favors
higher-energy microstructures.

Since the internal potential energy decreases during aging,
the jammed states are thermodynamically more stable than
the initial quenched glass. They are also more stable dynami-
cally because, as shown in Fig. 8�a�, they are surrounded by
higher activation energy barriers. Quantitatively, the jammed
states have no barrier below 0.25 eV while the initial
quenched glass has a small but significant fraction of barriers
of about 0.6% below 0.1 eV. We tested the stability of the
jammed state obtained at �A=0 � by performing a molecular
dynamics simulation involving annealing at 300 K for 0.5 ns:
after an energy minimization, the glass returned to its initial
configuration. On the other hand, the flow states reached
above the yield stress are only marginally stable since, as
shown in Fig. 8�a�, they contain a significant fraction of en-
ergy barriers below 0.1 eV; this leads to a rapid evolution of
the glass microstructure in a dynamical simulation. This
point was checked by performing molecular dynamics simu-
lations at 300 K as above, with the result that the glass had
transitioned to a new inherent structure after only 0.4 ps.

Our calculations thus evidence a strong relation between
the internal potential energy of a state and its stability: the
lower the internal potential energy, the higher its surrounding
activation energies �i.e., the deeper its basin of attraction�.
This scaling appears to be a general property of potential
energy landscapes, as discussed by Debenedetti and
Stillinger.64

D. Polarization

The glass microstructure after shear flow is specific and
characteristic of the flow leading to it, because of its polar-
ization. Deformation-induced polarization was first discussed
by Argon and Kuo,31 and was also reported in our previous
study on the quasistatic deformation of the present simulated
system.46 Polarization is evidenced here by the asymmetry of
the inelastic strain distributions in the flowing regime �Fig.
8�b��. Physically, polarization arises because in the initial
phase of deformation, the glass accumulates positive strain
events that leave a signature in the glass microstructure. Es-
caping from this configuration is therefore more likely to
involve a negative strain event that removes some of the
excess positive strain, implying an asymmetrical inelastic
strain distribution. We note that polarization depends on the
symmetry of the strain tensor. Simple shear is certainly the
most favorable state to induce polarization, while we expect
that isotropic deformation �compression or expansion� would
not induce any shear anisotropy.

We find that polarization cannot be easily detected in the
present glass microstructure. In particular, it does not come
from a simple anisotropy of nearest-neighbor bonds. This
contrasts with amorphous silicon where anisotropic distribu-
tions of atomic bonds have recently been evidenced after
plastic strain, using the fabric tensor.65 We computed the fab-
ric tensor on the present structures in the jammed and flow-
ing regimes but found no significant evolution. The reason is
presumably the absence of angular terms in the interatomic
potentials used here.

Polarization leads to strain recovery during aging of de-
formed microstructures, as evidenced by the negative mac-
roscopic strain during aging with no applied stress in Fig. 6.
Strain recovery was used by Argon and Kuo31 to determine
the distribution of thermally activated events in a metallic
glass, and was also observed experimentally in colloidal
pastes.62 It originates from the removal of the polarization of
the initial state that involves an excess of negative strain
events. Strain recovery is however small in the present sys-
tem and is masked when a positive stress is applied, as seen
in Fig. 6.

It has been argued in the literature that temperature and
applied stress play similar roles in jamming systems,57 a con-
cept supported by the existence of an effective temperature
that describes driven athermal disordered systems, as shown
numerically in a number of atomic systems.22,23,30 Indeed,
shear flow in the present simulations brings the glass to a
high-energy state, with an energy that increases with applied
stress, as would be obtained by application of an elevated
temperature. This process, which opposes aging, has been
named rejuvenation in the simulation13 and experimental66,67

literature.
The present results, however, speak against the simple

analogy between temperature and deformation. The phenom-
enon of polarization shows that an increase in temperature
does not bring the glass to the same position in the potential
energy landscape as does an applied stress, at least not in the
case of a simple shear. An increase in temperature has a
negligibly small probability to bring the glass to a polarized
state; the effect of temperature is isotropic. Stress-driven pro-
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cesses should therefore be distinguished from rejuvenation,
as in the theory of shear band propagation of Shimizu et
al.28,29 who proposed to call this process alienation.

Based on these considerations, we speculate that captur-
ing the state of the glass in a single variable may not be
possible. Instead, the effective temperature could perhaps be
defined as a tensor in order to reflect the symmetry of the
strain tensor. Similarly, the notion of “free volume” as a glass
state variable may capture isotropic effects in a manner simi-
lar to the effective temperature, but cannot account for po-
larization. We note here a possible analogy with theories of
crystalline anisotropic plasticity where damage is repre-
sented by a tensor.68 These conjectures require considerable
additional investigation. In any event, the present Monte
Carlo approach to simulate glass flow at long times may
provide a useful tool to explore the details of extrinsic driv-
ing forces and how they influence the energy landscape.

V. CONCLUSION

We have proposed here an alternative approach to con-
ventional molecular statics and dynamics based on Monte

Carlo simulations in an off-lattice disordered system. Al-
though the work presented here is restricted to two dimen-
sions, its extension to three dimensions is straightforward.
We have shown that accounting for thermal activation
through the use of the activation-relaxation technique signifi-
cantly reduces the yield stress compared to estimates based
on quasistatic simulations. This method also gives access in a
single framework to both aging and flow, and sampling the
energy landscape has proved to be a useful method to char-
acterize the microstructure of minimum-energy states, both
below and above the yield stress.
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